COE CST Second Annual Technical Meeting:

Wearable Biomedical Monitoring Equipment for Spaceflight Participants on Suborbital & Orbital Flights

Richard T. Jennings, MD

COE

Federal Aviation Administration

November 1, 2012

Overview

- Team Members
- Purpose of Task
- Research Methodology
- Results or Schedule & Milestones
- Next Steps
- Contact Information

Team Members

- Jon Clark, MD Baylor Center for Space Medicine
- Duane Chin, Christine Smith, Kate Kubicek, and Jack Rasbury, Wyle
- Sharmi Watkins, MD, USRA/NASA
- Anil Menon, MD, Jennifer Law, MD, Rebecca Blue, MD, and James Pattarini, MD (Residents)
- Wes Persall, Virgin Galactic and Brienna Henwood, NASTAR, ad hoc
- Jim Vanderploeg, MD, UTMB (Co-PI)

Objectives

- Enable human physiological data to be collected for operational, medical or research interests
- Identify and determine appropriate design assumptions and operational constraints
- Test prototype monitoring equipment that integrates into a wearable garments, harnesses, or flight suits to support monitoring by flight surgeons, operators, or scientists

Objectives

- Assure that hardware is compatible for multiple operational and environmental parameters
- Avoid setting monitoring requirements or regulatory monitoring requirements for operators

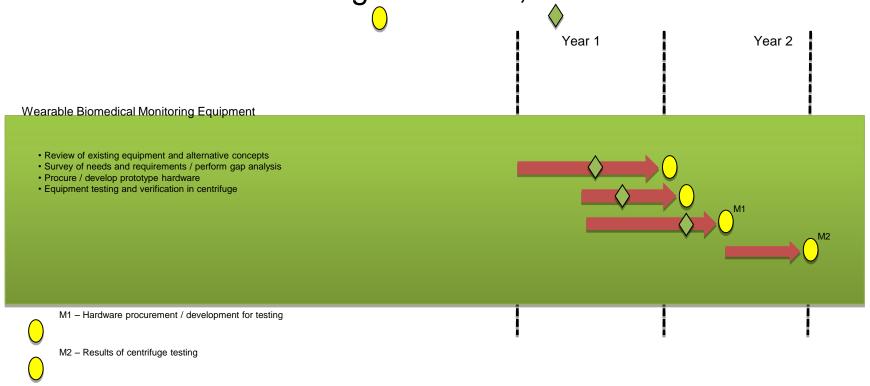
Research Methodology

- Comprehensive survey of existing wearable biomedical monitoring equipment to determine availability of off-the-shelf hardware. Leverage previous NASA work.
- Survey flight surgeons, scientists, and space vehicle operators to seek input on the features and capabilities needed from biomedical monitoring.
- Compare capabilities of existing hardware and software with the needs and desires of the operational and research community to identify gaps.

Research Methodology

- Using gap analysis, identify technologies needed to fill gaps and explore which existing technologies can be repackaged and incorporated into a wearable system.
- Prototype hardware configurations will be purchased and tested under expected G profiles in various operator's launch/landing systems using the NASTAR Center.
- Test hardware when opportunities arise in environments such as altitude chambers and zero-g flights

"I see that you've been to NASTAR."



Results and Schedule

- Initial Team Meeting April 27, 2011
- Market Survey Completed(NASA Partnership)
- Draft Recommendations Document Completed

Second Team Meeting October 3, 2012

Draft Document Finalized

Recommendations for Commercial Space In-Flight Biomedical Monitoring Equipment

Prepared for the FAA Center of Excellence

October, 2012

wyle

Wyle Technical, Scientific, and Engineering (TSE) Group

Page 1 of 12

Operational Monitoring Capability

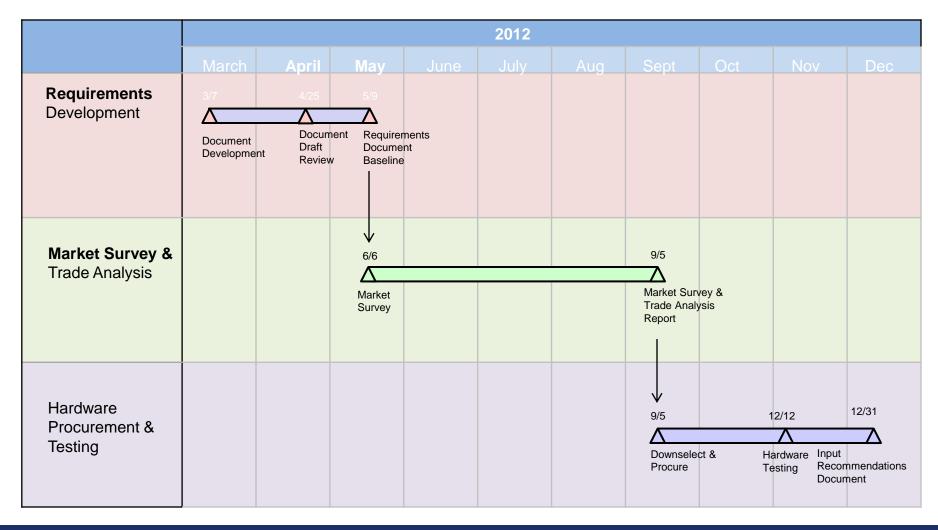
#	Capability	Design Criteria
M1	ECG/Heart Rate	 One lead Range: 0 to 240 beats per minute Accuracy: +/- 10 % / 5 beats per minute Non-wet prep electrodes preferred Continuous data collection
M2	Respiratory Rate	 Range: 5 to 50 breaths per minute Accuracy: +/- 1 breath per minute Continuous data collection
М3	Blood Oxygen (SpO2)	 Range: 70 to 100 % Accuracy: +/- 4 % Fingertip, earlobe, toes, or forehead Continuous data collection
M4	Blood Pressure	 Range: 10 to 300 mmHg Accuracy: +/- 5 % Continuous data collection
M5	Acceleration	 Range: 0 to 7 G Accuracy: +/-0.1 G/second Multi-axis Head/body acceleration matched to vehicle Time/event matched (e.g. launch) Synched with physiological data

Enhanced Monitoring Capability

#	Capability	Design Criteria
R1	ECG	 12 leads Range: 0 to 250 beats per minute Accuracy: +/- 10 % / 5 beats per minute
R2	EtCO2	 Range: 0 to 99 mmHg Accuracy: +/- 2 mmHg / 6 % Microphone mounted?
R3	Anxiety	Eye movements and dilationGalvanic skin resistance
R4	Blood Sugar	Range: 20 to 500 mg/dLAccuracy: +/- 20 %
R5	Core Temperature	Range: 25 to 45 degrees CelsiusAccuracy: +/- 0.1 degrees
R6	EEG	 Helmet monitoring IR spectroscopy a consideration EEG durability for centrifuge Data transmission with monitoring
R7	Thoracic Bioimpedance	 Cardiac output
R8	Intracranial Pressure (ICP)	 Difficult with LP requirements Consider less invasive monitoring such as optic nerve ultrasound
R9	Neuro-vestibular	 Camera on the passenger Eye motion Video recording Kinetic post flight monitoring

Market Survey Categories

- Multi-parameter
- Respiration
- ECG
- Acceleration
- Blood Pressure
- SPO2



Market Survey Multi-parameter

Device	Manufacturer
Autogenic feedback system	NASA ARC
Equivital EQ02	Hidalgo
VisiMobile	Sotera
Lifeguard (CPOD)	Astrobionics
MW1000A	Mindware Technologies LTD
EQ01-1250	bio-lynx
LINK Armband	BodyMedia
Minitor AR7000	Atlas Researches Ltd.
Wireless Physiological monitor	Biocontrol
ProPaq LT	Welch Allyn
Mini-Medic	Athena GTX
WVSM	Athena GTX
VitaGuard	getemed
ApexPro	GE Medical
MobileMe	Biosentient Corporation
MicroPaq	Welch Allyn
Watch_PAT200	Itamar
BioRadio 150	Cleveland Medical Devices
SmartShirt	Sensatex
g.MOBIlab	Guger Technologies
NeXus-10 MKII	Mind Media
HealthVest	SmartLife Technologies
Spot Vital Signs LXi	Welch Allyn

Biomedical Monitoring Schedule

What We Have To Date

- Assumptions
- Market Survey
- Draft Recommendations Document
- Procuring Hardware
 - Equivital EQ02 by Hildalgo
 - ViSi Mobile by Sotera
- Initial Centrifuge Testing Scheduled December, 2012

Conclusions and Future Work

- Distribute draft recommendations document for review
- Determine best fit hardware during centrifuge studies
- Finalize recommendations document

Future

- Test in other analog environments (eg zero-g or altitude chamber)
- Compare flight data to analog environment data
- Peer-reviewed publications and presentations

TASK 255: Wearable Biomedical Monitoring Equipment for Spaceflight Participants on Suborbital & Orbital Flights

MAJOR MILESTONES - PAST

- Assumptions and Constraints
- Market Survey
- Draft Recommendations Document
- Hardware Procurement

MAJOR MILESTONES - FUTURE

- Initial Centrifuge Test Monitoring Capability
- Industry Input Recommendations Document
- Finalize Recommendations Document

SCHEDULE

- December 12, 2012 Centrifuge Testing
- Document Input December 31, 2012
- Final Recommendation Document June 30, 2012

BUDGET

- FY13 FY14 FY15 FY16 FY17
- \$23.5K -\$00K \$00K \$0 \$0K

Contact Information

Richard Jennings

University of Texas Medical Branch

301 University Blvd

Galveston, TX 77555-1110

409-747-6131

rjenning@utmb.edu

